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II.1. Introduction

The light from most stars does not seem to vary much with
time, this is an indication that a quasi-static mechanical
equilibrium condition persists in stars. Our sun, which
has been observed with great precision, shows mechanical
motion only in the outermost layer whose mass is a negligible
fraction of the total mass. Therefore as a first approximation
we may assume that in all stars a mechanical equilibrium is
established in the bulk part of the star. The basis of this
approximation is further assured by results of a complete
dynamical treatment in Chapter , where it is shown explicitly
that dynamical effects become important only when the velocity
of moving matter of the star approaches the speed of sound,
which is roughly the thermal velocity of gas particles, and
also the velocity of free falling matter corresponding to the
surface gravity of the stars.

By a similar argument rotation can be neglected, as far
as the mechanical structure is concerned, provided that the
centrifugal force due to rotation is small compared with the
'gravitational acceleration at points under consideration.

Neglecting the motion of fluid elements and effects of
rotation ! the structure of a star assumes spherical symmetry.
The conditions for equilibrium become simple differential

equations from which, approximate relations between the central

temperature, central density, and the mass of star can be




I1.2
obtained. These relations are helpful to understanding the
structure of the stars.

In addition to obtaining the condition for mechanical
equilibrium for a star, we also develope a qualitative theory
o stellar structure, based on methods of dimensional analysis.
We shall show that, because of quantum effects, there exists
a maximum temperature for stars of a given mass, and that there

exists a maximum mass for stars’ &t zero temperature.

I1.2. Hydrostatic Equilibrium.

A star is held together by its own gravitational field.
Since the gravitational field of a mass element is isotropic,
neglecting anisotropic effects such as rotation and magnetic
fields, the structure of a star assumes a spherical symmetry.
Consider a volume element dv at a distance r from the center
of the star. The gravitational force acting on the mass of
the volume element is —/ﬂ G—-L,\‘é{)d\f , where M(r) is
the mass enclosed within a sphere of symmetry of radius r

and //9 is the density. (Fig. II.l).
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The difference between the hydrostatic forces is dPdA where
A is the area of the volume element and dP is the difference
between the dydrostatic pressure at the two surfaces of
the volume element. In equilibrium the gravitational force

is balanced by the hydrostatic force. Hence

dPdA = G‘f;ol\n - Gi’\_?_(_")o\\r
v

(IT.1)

or:

TR

re (1I.2)

This is often referred to as the equation of hydrostatic
C 2
equilibrium. By definition,M(,-) = SOLHTF/O aAr— and

the corresponding differential equation is

M .
d (r):‘-\ﬂ'\’/o (11.3)
i

the associated boundary condition is MU'\ =0 at r=0.
Egs. (II.2) and (II.3) are the two basic equations
of stellar structure. Generally P is a function of two thermodynamic
variables which may be chosen to be //9 and T, where’'T is
the temperature. Therefore solutions of Egs. (II.2) and
(II.3) are not unique. Additional equations are required
to render uniqueness. The additional equations are energy
transfer and energy production equations. They are discussed
in Chapter V. The nature of the complete set of equations are

discussed in Cha pter IX.
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IXI.3. The virial Theorem

Many important properties of stellar structure deal
with the mechanical equilibrium. Most of these properties
can be obtained from an integral theorem known as the
virial theorem. The virial theorem is an integral representation
of the hydrostatic equilibrium condition, it relates the

self-gravitational energy of a star to its thermodynamic

energy.

Multiply both sides of Eq. (II.2) by qrrr oAr'

we find

R

(IT.4)

Denote by V the quantity ler_ . V is the volume containing

mass Mr. Substitute Eg. (II.3) into the right hand side

of Eq. (II.4) we have

VdP - -% G_M_(F)CLM(r) (II.5)
'y

Eqgq. (II.5) is integrated over the star. By
partially integrating S‘ldp , we

obtain

(v dp- Pyl j‘Fo\\/ (31-6)
bOUW&Mﬂ
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Since V vanishes at the center, P vanishes at the boundary

and therefore the first term vanishes. Eq. (II.5) becomes

_?)j?d\/ = —jG’r:Sr\ dMU’) (II.7)

This is the Virial theorem. The right hand side is the
self-gravitational energy of the star; that is, the energy
that is needed to disperse the material of thke star into
infinity. The left hand side is a kind of thermodynamic
energy.

From our treatment on thermodynamics and statistical
physics in chapter IV, it can be established that the pressure
P is related to the thermodynamic energy density of the gas
E by simple relations in the following two limiting cases

of gas temperature¥*

—L
¥>" T;EZ non relativistic gas (II.8)

P- LE

relativistic gas (II.9)

From Eg. (II.7) we find the relation between the total

thermodynamic energy of the star E1: and the self-gravitational

* A gas is relativistic (or non-relativistic) if the thermal
velocity is A/ C ((;\" << C> where c¢ is the velocity of light.
If the mass of the gas particles is m, then for a relativistic

Z 2
gas kT >> mc and for a nonrelativistic gas kT «<mc .
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energy of a star E. :

SE'c\,\) =B e, -3 g&& ©OdM (II.10)

non relativistic case

E(-_= -Ee ((II.11)

relativistic case

The total energy of a star W may be defined to be the sum of

Et. and EG—‘ We therefore find:
E. =+Lg. = "E
W=E - tEec 2iFe T (II.12)

non relativistic case
W =0 (11.13)
relativistic case *
We therefore obtain an important result that a star composed
of relativistic gas is not gravitationally bound. As a star
approaches relativistic conditions instability may arise. These

instabilities are discussed in more detail in Chapter XIII.

* Strictly speaking, if a star is composed of only one type of

gas particles, when the gas becomes relativisic, general relativistic

corrections to the stellar structure equations (I¥I.2) and (II.3)

also becomes important and the present theory is no longer

applicable. However, in a star both electrons and nuclei contribute
ness

to pressure and it may happen that, because of the comparative small-A

of the electron mass, the electron gas can become relativistic

while general relativistic corrections to (II.2) and (II.3)

are still unimportant.
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The photon gas is a relativistic gas, hence instabilities
can also occur in a star if the radiation pressure dominates
over gas pressure. We shall show in Sect. II that this will

give rise to a maximum mass limit for stars.

II.4. Secular Stability of the Stars.

The fact that a star made of relativistic gas is unstable
leads to the important question of stability for the stars.
There are many types of stability problems and criteria for
stability, but here we only need to ask if the equilibrium
configuration of a star is stable against small perturbations.
This kind of stability is called secular stability.

Small perturbatiolns applied to stars can be regarded
as adiabatic perturbations. This assumption is fully justified

except near the outer layers of a star.
in most cases A The time scale for redistribution of energy
in stellar interior is of the order of 103 years or more
(AJlOg- years for the sun). The time scale for perturbations
to propagate across the star is of the order of the period
of pulsation, which ranges from a few hours to a few days.

The following stability statements can now be made: A
star is secularly stable if it is stable against arbitrary
adiabatic perturbations; a star is secularly unstable if
it is unstable against any one mode of perturbation. 1In terms

of energy, a star is stable if its equilibrium configuration

is located at the absolute minimum on its energy surface.
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This means that the first variation of W vanishes and the

second variation of W is greater than zero. To summarize, we

have

M";() (condition for gravitational binding) (II.1l4)
(Sw>od =0 (condition for hydrostatic equilibrium) (II.1l5)
(SZ‘ W>OA_>O (condition for secular stability) (II.16)

where the subscript "ad" refers to adiabatic conditions
and ‘5 denotes variation. The adiabatic conditon is
also the same as the condition S=constant where S is the
entropy. In the rest of this section all variations referred
to are taken to be under the condition s=constant.

Let \J = L be the specific volume (volume per
unit mass) and let € be the thermodynamic energy per

unit mass. The variation on E ives
<

¢ §feav-5e dhy= g}em@

(I1.17)
According to Chapter III,

(e = (%%)SSV—— Pov 2z 10
Further, from Eq. (II.3)

= 3 dv (11.19)

s =D
//9 Cﬁp\(r)
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hence

d S\/ = ‘l (+|1r i )
L dM(r) dM(r) (11.20)

Eq. (II.17) then becomes

%Et Sde HTFFLS‘_C‘—M(")

(Ir.21)

The variation on Eér is

R
R = 9y
R TN CLER

The condition for equilibrium (II.15) thus becomes:

e §<Et+ Ee) ,SR< ‘\'(L-V))Sr'cm(r) =0 (I1.23)

N 4
or:
4ar _ - GM
cLM(() — (II.24)
Substituting Eq. (II.3) into Eq. (II.24), we obtain
4 eGM(
Ar e

which is the same as Eq. (II.2).

The second variation of &

% € = S[ ) %\r‘] - YF%\YI (I1.25)
-(%%)s CHRN
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We find, however,

i 45V \ 4 fgme (o)
%U’:% dM cr“_'t(y)L .—L )‘} (I1.26)
and L
(ory= oV)
\WTTrV (I1.27)

Define the first adiabatic exponent T? by the equation:*
-V /23
I: = — i (11.28)
T \>2Vv /s
|| . . . . .
| has a simple meaning: In an adiabatic process the relation

between P and v is

T
?\)" = Corstaxt (II.29)

2
The second variation of E+ is an integral of SS & over

er.. The second variation of EG}- is just

2 L8 2,
S E.= _y 26"":(") (%() - dMin) (11.30)
>

r

Substitute Egs. (II.26) through (II.28)) into Eg. (II.25) and

Eq. (II.30), integrate Eq. (II.25) over dM(r) we find

*The rest of adiabatic exponents are defined in Chapter III.
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S = S { ‘i;“:i)) ‘\S’ﬂ‘r(%()]__ Q&M(()(gr)?dM(’

P V JP ?WF(S(‘{C‘M r)
S { (iﬁm ?J%( ‘Tmr(gr } M) (Er.om

By partially integrating the second term we find it is identical

with the third term. Eq. (II.31l) then becomes

S W j { '4 SV) T (_%_\L)‘{AM(” (II.32)

Change variable from Mr to V, we find, since v= é‘L/..
oV L (sv) My
d
%W S [_( , % 1‘:‘ V] 1i(cl\/ (11.33)

where the upper limit of integration \/& is the volume
m&
of the star and is 4 = , R is the radius of the star.

The stability criterion can now be stated in terms of W :
' 2
\\ The star is stable if 8 W is greater than zero for every Cc\/

1
the star is unstable if % W is less than zero for a S\/

V . Following Dyson's treatment, we define a

quantity Y :
v, 1
y= S, TP (3'-3_) 4\/

(II.34)
° VgV
Since 67<0 f >0 and/rl‘ > | / ¥ is
P

always greater than zero. Comparing Eq. (II.34) and (II.33)
we see that the condition for stability is that >% for
every ¢. This condition is easily reducible into an eigen

value problem,
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Define 72 by the following equation:
. (& d49\* dP &_L
n :jo {_ﬂ P(‘&%) tYIy v {Cl\/ (II.35)

If ;7 is set to be zero, Eq. (II.35) is the same as Eg. (II.34).
If the structure of the star is given then 77 and P are
functions of V. If g is also a given function of V then

from Eq. (II.34) ) can be computed. Conversely, if @ is
given a priori, then the equation for g can be obta ined from

Eg. (II.35) by requiring that the only form of g is admissible,

if it gives '7 =¢0. This is the same as to state that
S”’? =0 (II.36)

From the variational principle, this results in the following

equations:

j!\_/_(w?%>,,__€_(%)?, (II.37)

The boundary conditon for Eq. (II.37) is
=0 at v=0 (condition at the center) (11.38)

’:0
];' F&‘IO at <0 (condition at the surface) (II.39)

These boundary condition are physical requirements. Certainly
SV lsh if V i 9 -
must vanish if V is zero, and d.v/ must not have singularities

anywhere. Eq. (II.37) is a self-adjoint second order differential

equation; it is known from the theory of differential equations




IT.13
that solutions to Eq. (II.37) which satisfies boundary conditions
at two points in space exist only for a limited range and
values of J/ . This set of )/ is called the eigen
value of the differential equation. Let the minimum eigen
value be X; . Then the statement of stability states that,
if b’o> 4/3 the star is stable and if Ya < % the star i s
not stable.

Generally 77 is a function of thermodynamic variables
and is not a constant. No general solution has been found for
Eq. (II.39), hence no general stability criterion can be
given. Each problem must be treated separately. HoWever,
in many cases 77 =~ constant. In this case solution to

Egq. (II.37) is easily obtained. The solution is:
YO = T,’ (11.40)

;, = kV (II.41)

z
where k is a constant. The stability condition % W >0

becomes simply v
R [»)
ol
%ZW :‘/}{‘i {TT’.’ + % CIV ’\/}Av > O (II.42)

Partially integrating the second term, Egq. (II.42) becomes

2 o (V
% W =k S Q?(T\'-'/[Q J,\/>o (11.43)
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A non relativistic gas has 77 = 5/3 and is stable.

A relativistic gas has 77 = 4/3, and is not stable. For

other reasons (e.g. internal degrees of freedom) 77 may

be below 4/3.

IT.5. Integral Theorems.

The virial theorem is an integral of the equation for
hydrostatic equilibrium; it relates the thermodynamic energy
of a star to its gravitational energy. There are other similar
integrals expressing inequalities between— the central
pressure, temperatue, to the mass and radius of a star.

Some of these integral theorems are discussed below.

Theorem 1. (Chandrasekhar). If the density /%7 does

not increase outward, then
¥/3 Y,

- s
-—G(‘Tr)/ Lr)M (r)éT’c-F*L‘\S(’(‘i )/0 M (r) (II.44)

where
— \ = M
/20 %"Z‘—ra (II.45)

is the mean density interior to r.
Proof: Integrating the hydrostatic equilibrium equation (II.2)
from 0 to r, we find
P-T-= = gr MLAC"MU)
rH

Hq1 (II.46)
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Eliminate r in the integral by using Eq. (II.45), we find

/A C ~Ya s
—?C_-F .,‘/lﬂ_(g 77) é.fo/o ) MM dM(r) (II.47)

—

if /0 does not increase outwards, /(r) does not increase
outwards too. Replace ; in the integral by /z and /J(r')
respectively, we obtain the inequality (II.44).
Set r=R in Eq. (II.44), we find
" v
éé(%”)/;ﬁ/sl”%i P> 2 GM (I1.48)
T R

Numerically the right hand side of Eg. (1I.48) is:

13, M < /( 4
P =/33%0 -‘) (ﬁ) d (II.49)
< {@ R Cmr_
Theorem 2. (Ritter). In equilibrium,
>3 6M aM
T'DcR t= L N - £ > T (I1.50)

Proof. Since

d M 0
S (P GM() ) __GH _ .
dr ( g-n—rq arrrf O (II.S )
1
we conclude that ’? + G}A:T(r‘j decreases outward.
2
M (r) -
P.>P+ T >[%7 (II.52)

N
Multiply Eq. (II.52) by 3ITI C‘—r and integrate friom
r=0 to r=R. We find

R S
TP R > 38%\/%&)& MT0dr %&’\@ (11.53)
‘-L
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By partially integrating the second integral in the middle

of Eq. (II.53), we find

(Fem(dr, oM’ 2 “e M dMI) oy
& o

. -GR_OE. (11.54)

- r R
x
. . 3 &M
Substitute Eq. (II.54) into Egq. (II.53), add T B
and use the virial theorem to eliminate_Sf’d\/ , W e
have
3 &M GM
7P R¢3 &8 5~ -Eg >
< R 2R (II.55)

Corollary. Eg. (II.48) can also be rewritten as:

AV Y
(/::> . ﬁ‘f > PQ (II.55a)

Substitute this result into Eq. (II.55) we obtain

BGML ( ) J E@.>i% (II.55b)

Theorem 3. (Ritter). If radiation pressure is negligible an d

the gas is a classical ideal gas, that is,

-/MmP (11.56)

where AA is the number of gas particles per proton mass
( A is the molecular weight = ~ t ’) )a\\d if

is a constant throughout the star, then

T Z = ‘ il G’M (II.57)
k&




where T  is the average temperature defined by

__ 3
T = § TaM /y
Proof. Since
MT . LR TdMID) = //L f d"“f)

MAMp R
= ;;ffo PdV(r) = 31/:%’ £,

Use the right hand side of Egq. (II.55), we obtain

'7:>Z’““m M 3 g4 v10°e M Ro
A g @ r

(A more stringent limit on E . has been found by

Chandrasekhar to be

5 = = S
e 5 r
where (Z is given by

IT.17

(I1.58)

(I1.59)

(IT.60)

(I1.61)

(11.62)
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Theorem 4. (Chandrasekhar). Let (/’,4%> be the ratio

of the radiation pressure to the total pressure, than if the

gas is a classical ideal gas, then

("ﬂc) < /—/8* (II.64)

where‘/g* satisfies the quartic equation:

/‘(/77 (I1.65)
i GL /3* G;%é\
Proof. The total pressure P is given by
11
P T La T (II.66)
/Mﬂlf “3
where ééxj- is the radiation pressure. The definition

of (l“/ﬂ) is then
S 4

- - K —_—
(1-8)P= 314/ y /3/0/’”;; A2 (I1.67)

From Egqs. (II.67) we obtain

3
£ 3 -85 4
T A, q’/s ] 3 (I1.68)
F :\I __../7—— 3) -/ /3 57
A My /“"7/ & gy (11.69)

T - B"‘ “ﬂ”:jé/{% (1I.70)
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From Eq. (II.48), we have
2 la (i3, o
PC ;b—-(& ) M~ (IT.71)

With a little algebra, from Egs, (II.70) and (II.71), we obtain

M> /C, 4[( ‘/:i /‘4 7 /
./« < /écy G\%’.\ (IX.72)

If we define /5 by Eq. (II.65), then clearly
"
/-8 > / /gc
4
/5* ﬂ 7
Since (/fﬁg4;5‘ is a monotomic function of/;f we

find

(I1.73)

£ _
/=8 = //gc- (11, 74)

The values of (l—/e’) are 0.025, 0.1, 0.4, 0.6, 0.8

2
for(%%) ¢ = 0.908, 2.130, 9.585, 26.41, 122.0.

II.6. The Uncertainty Principle of Heisenberg and the Energy—‘

Density Relation of a Gas at low Temperature.

In some cases discussed previously it was assumed that
particle
theAgas is a classical ideal gas. This assumption is valid only
if the temperature is high, or the density is low. At high
density and low temperature all real gases exhibit quantum

phenomena. Among all quantum effects the most important one

in astrophysics is the Fermi degeneracy.
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The effect of Fermi degeneracy can be understood in terms
of the Uncertainty Principle of Heisenberg. According to
this principle, both the position r = (x, y, z) and the
momentum p = (& , P, p ) of a particle can be determined
~ y "=

only to within an uncertainty AL and Ap given by the
4%

following equations:
axap, =h
sy ap, = h
A} AP}_?_ H (II1.75)

The values of dynamical variables of a particle are eigen
values of the wave equation in quantum mechanics, and the
complete set of eigen values of the dynamical variables
specify the state of the particle. The position, momentum,
angular momentum, and so on, are typical dynamical variables.
For a free electron there are three sets of dynamical variables:
the positionﬂf, the momentum/e and the spin I (=%1(). The spin
has two eigen values corresponding to the two directions of
the spin. Because of Eq. (II.75), if the spin of the electron
is specified, states with different momentum and position
coordinates within a volume element Aﬁ[:ﬂﬁ]i (where
b{; and Ai: satisfies Eq. (II.75)) are not distinguishable
and therefore should be counted as one state only. Since

there are two value of spin allowed, within the volume element

D b
DU Ap there are two states.
(8%
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Electrons are Fermions, hence will follow Pauli's exclusion
Principle, which states that the number of particles in each
state is either one or zero. This means that within the
volume element /.)if; Aaf the maximum number of electrons

~
is two.
Let ré be the mean distance of separation between

electrons, then the number density of electrons is

{
/ne= g 3 (11.76)
= o

Let the mean uncertainty in the position of the electron be

A,

e . Certainly Are Crt . Also the mean uncertainty of

the momentum, Af’i is less than the average momentum "3{ .

Therefore

Lf >h (11.77)

From Eq. (II.76) and (II.77) we obtain a maximum electron

density 7 (4.2 corresponding to an aberage electron momentum f< :
() e 3 .3 |
n‘e /]{ 2 _‘F_i; UTra (3 (T 713)

where 'Qt is the statistical weight of the electron and Je = 2,
(A detailed analysis in Chapter III gives

(u./,): / 3

n ~ (II.78a) )

( 772.%3
For a given density Eq. (II.78) states that the average

momentum f( cannot fall below fe . That is, even at
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absolute zero, microscopic kinetic energy of the electron is
not zero but is some finite, the value of this residual thermo-

dynamic energy E(T=0), is
E(T‘.}D) = /’eée (11.79)

where é@ is approximately the mean energy:

'S

/
VA
A en'c?)ome (11.80)

For non relativistic electrons

T
€ ~fe
am

(I1.81)

Hence the energy density relation is (using the more
exact relation (II.78a) )
Z
(uA.) w3 7 Y/
= = 7
F@'«O) =1, £ = (7 7:.!__ e (II.82)
< am

For relativistic electrons
Ee X P (II.83)

Hence the energy density relation is

_ AV ]
E(T=0) = (77'1”. )SC e (II.84)

For a real gas whose temperature is not zero, the energy-density
relation is much more complicated. However if & ‘:C:ffe_

Egs. (II.82) and (II.84) are good approximations to the
energy density relation. The limit _)f:_l_, S (O is known as the
Ce




I1.23

Fermi degeneracy limit.

Because E(T=0) is inversely proportional to the mass,
at kar—élc-éieL it is expected that the energy of the electrons
will dominate over that of heavier particles. Hence at low
temperature the pressure and energy of an electron gas

dominates.

ITI.7. Dimension Analysis of Stellar Structure Equations. I.

Fermi Degeneracy and Stellar Structure.

The equations of stellar structure are non linear equations;
in general solutions cannot be generated from a known solution
by a change of scale. Only in a few highly idealized cases
is this possible.

However, for a star of homogeneous structure solutions
show strong dependence on the mass, radius, temperature,
and the equation of thermodynamic state. Approximate solutions
can be obtained from a known solution by a change of scale;
such an analysis of solution characteristics is known
as "dimension analysis".

(a) The Gravitational Enerqgy of a Star.

The upper limit for the gravitational energy of a star
obtained in Eq. (II.55b) is a very generous upper limit. For
most homogeneous stars the ratio of pressure to density

follows a simple relation:

’.">

— - ConsYunt (II.85)

.
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It is found that the parameter n is roughly a constant (varying
from 3 at the center to 1.5 at the surface for the sun).

(n is known as the polytropic index). 1In chapter IX it is

1 +4
™
shown that if | C*-)o " then the gravitational energy
of a star is given by
g2
- — 3
Foo= -2 e (II.86)
5-7 R

For other reasons the case n 25 may be excluded from our

discussion, and for most stars n varies from 1.5 to 3. Hence

. &M*
EG: is ‘of the order of 'Y .

(b) Temperature, mass, radius relation for a star made

of a classical ideal gas.

The pressure P is

3 K~ F
Py 77',,7— "6';{/"7 (II.85)
Numerically
— Vo - %
T = [‘1 e . ﬁ_ A~ (11.86)
0 v 0O

(c) Non-relativistic case of a Star Composed of Fermi

Gas (The Maximum Temperature of Stars).

—

Express ‘T- in terms Pe , we have, in the non-relativis-
tic case,
—_— -2
RT = P (11.87)
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We can express Eg. (II.86) in terms of ?z (the mean value
of r_throughout the star). We find,

A ™
=
Q.
73
-, M ’l3é.mN
T (\ );_ (1I1.88)

where Np is the total number of proton masses of the star,

A and z are the average values of the mass number and

atomic number respectively.

T
Multiply both sides by Y. and lise the uncertainty relation

<

(I1.77), we find:

-2 2z
er Rl o f’ <k (II.89)

-

Using Eq. (II.87) to eliminate , we find

(e
- A 2
T < I (ﬂ_) 6—’% (am)l/‘] - /max (I1.90)
7

Therefore T is the maximum temperature that a star

max

of mass M may ever reach, ssuming that the electrons never

become relativistic.

7
Express temperature in units of 7.=M¢ =593 x 10

o ——
A<_
Eq. (II.90) can be simplified to give

- ) ,~2 N L
T < T 2T S AT Ve (02) aeon
C

It is natural to define a unit N, for the number of proton

v

o
K,



II.26
masses in a star, that

2 ~'3/;

_[Gm 57
No ('*f = 2.203% xs0 (—’t 2 /1/@) (I1.92)

Eq. (II.92) then becomes

! 2 '7//
—_ . _ /V(-_ i 3 3
< //ﬂax _;7;[ 3 (2—) ] (/V%JO\ (I1.93)

G mp . | .
is the equivalent of the fine structure constant
H <
for the gravitational field. Numerically
= 7
- &M -3
KA = £ - 59055 x/s0 (11.94)
ga XS

Eq. (II.93) can be used to understand the existence of
planets and stars. The most abundant element in stars
is hydrogen, whose ionization temperature T . 1is roughly
given by

Lon ‘ & R
k-‘_\t —r\\;;lo\L meCL: \3.(9 e\ L*he lonléa+\0ﬂ cne_pﬁ\,\ %) <

hqifogov\O&QMB
)
T X lexio °K (I1.95)
Equating the numerical value of TQ to T"\ : and solve for
' -3
(NP/NO) , we find that if M & |0 ® . the temperature

of the star is never high enough to completely ionize hydrogen.

This may be taken to be the dividing mass between stars and

planets. The most massive planet in the solar system is the
-3
planet Jupiter, whose mass is around 10 ® . The smallest

observed companion to a binary star is that of Barnard's star.

The mass is calculated to be around 163(3 .
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In order that hydrogen nuclear reaction may proceed

favorably, the temperature of a star must be greater than
a

10 K. Use this value for T , we find it is necessary that

MoK

~X
MZ /O © (II1.96)

For stars of masses less than this value there is no

nuclear energy source.
\ greater or equal to the solar massy
For stars of masses VY , T is of the order of

oy

o
6 x 10 K. This is also the temperature for completion

Sk
of nuclear reaction sequences until Fe is formed.
\greater than the solar mass, <
Hence for stars of masses V elements upto Fe could

be synthesized.

(d) Relativistic case of a star Composed of Fermi Gas.
(The Landau-Chandrasekhar Mass Limit).

We now examine the case of large stellar mass, but will
limit ourselves to the degeneracy limit. The energy density-

pressure relation is

(11.97)

T- QE

where o{ = 2, 1 in the non-relativistic, and the relativistic

cases respectively. The virial theorem then becomes

N
A SE dV = - Eé— "X.G’% (I1.98)

,‘g;'?
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Neglecting the factor X which will introduce an error by

at most a factor of 2, we can write approximately,

SEJ\/-"N‘O é—e%

(I1.99)
2 R, U S
c fe € +mcC - mC
From the definition of I« , we find
2\
= — — v
<me B (IIr.100)

}
Multiply both sides of Eq. (II.98) by FQ , substituting

Egs. (II.99) and (II.100) into Egqg. (II.98) and express NF in

units of NO (Eq. (II. 92)) , we find in the limit_,h_—:‘: <= E—;\
N, 2 o

~ [I f( 3 ] - re (II.101)

Ae

where }\C. = h/,nc = 3.8611x10 cm. 1is the Compton wave
length of the electron. The Uncertainty relation (II.77)
with the equal sign has been used to eliminate Pe_ .

The right hand side of Eg. (II.101) has a maximum at -\:C__=O,
the maximum value is unity. For a given value of (g)Ni’ < No
it is possible to find a positive value of FC_ such that

Eq. (II.101) is satisfied. If (%)LNP>N0 , then no

solution exists. Eqg. (II.10l1) expresses the equilibrium condition

of a star composed of a Fermi gas. The absence of a solution
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implies that equilibrium configurations does not exist if
7 2 ) 6 \2
(%) er N, that is, if IE)M’%")@ . Since
the pressure due to an electron gas dominates at low temperature,
this means for stars of masses M > Ya r2)% no
static equilibrium configuration exist. The existence
of this mass limit was first predicted by Landau, but the

Aim

numer ical value for the limiting mass (M ,. ) has been worked

out by Chadrasekhar to be

(g‘YMhm =5760 (11.102)

even at zero temperatureJ
At 2 = IOy}/C,n?,};ydrogen is not stable against nuclear
reaction leading to the formation of heavier elements, hence
the ratio of Z/A is around 1/2. This means that the limiting
mass is around 5.76/4 o _ 1.44( . In practice / decay
instability will set in for masses between @ and 1.40,
depending on the composition, Hence the practical mass limit
is less than 1.44 (9 .
Our analysis also shows that r,L is of the order of )Q .
This will give a mean density of around 1(;;"310b g/cx% . This g .
warfs.
value is consistent with observed values for the density of WI"RNJ
At finite temperature the f/\\:S;")“in Eg. (II.101) is

replaced by > , and our conclusion is not valid, equilibrium

configuration for stars of arbitrary mass exist. However, the



I1.30
energy supply of all stars is limited. Eventually the
star has to encounter the mass limit problem. This problem

is discussed in Chapter XIII.

II1.8. Dimension Analysis of Stellar Structure Equations.

IT. Radiation and Stellar Structure.

(a) stability of Massive Stars.

According to Eqg. (II.1l2) the ratio O ' of the total energy
to the gravitational energy of a star decreases as P approaches
(1/9E. If a small amount of energy SLV is supplied to

the star, the gravitational energy of the star will change

E w
by a fraction %Lfi > U . This means that
Ee
the radius of the star will also change approximately by
eR . SW A .
"y w . As —"2 approaches zero, w

approaches zero and the supply of an energy much smaller
than EG,- but comparable to w, can still cause the radius
of the star to change considerably. The star is thus
easily made to oscillate.

The oscillation can take place spontaneously if the star
has an energy source that is strongly temperature dependent.
When a small oscillation takes place, when the radius is
at its minimum the temperature of the star will be at its
maximum causing energy to be over produced. This energy
will further increase the amplitude of oscillation, this in
turn increases the energy supply. When oscillations of large

amplitudes take place, matter will be ejected from the star,

reducing its mass.
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For radiation P = (1/3)E, hence when the radiation pressure
dominates over the gas pressure the star will become
unstable against oscillation. We may therefore take as the condition
for instability, when the.ratio

radiation pressure
gas pressure

radiation energy density
gas energy density

”\7
g Vg

becomes too large then the condition for stability

against pulsation is that

(I1.103)

K _ radiation energy density
- gas energy density average
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must not exceed some value of the order one.

Approximate the average radiation energy density by<ﬁﬁ:q,
This approximation will over emphasize the importance of the
radiation energy density, resulting in too large an estimate
of )( . Hence the condition for stability against pulsation
becomes tht B{\ must not be too large.

The average gas energy density is (for a non- relativistic
and non-degenerate gas)

(1+3) 2T

T2

(I1.104)

<

The term (1/Z) is due to contributions from nuclei. Use

P

Eq. (II.87) to eliminate ri, , and from the definition of

a (Steffan—-Boltzmann constant)

l.’
A = i (II.105)
SR .
we find 2 y
a
&: ¢ _f__/Av(_A,jf_): MM
135 27 N> 20 My (II.106)

Therefore 6{~ increases as the square of M. If we restrict
ourselves to not too large a value of C?K , then there is

an upper mass limit for the stars. A detailed analysis by

Harm and Schwarzschild indicates an upper limit of 600 .

This is consistent with the maximum mass observed. (The Plaskett's

Star) .
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(b) Stellar Luminosity.

Energy produced inside a star diffuses outwards to the
surface where it is radiated away. Nuclear energy is the main
energy source of a star, and the nuclear energy production rate
is very temperature sensitive. If the following approximation
is used for the production rate Ei_(ergs per g-sec) at

constant density,

(2) T,k
En = En (11.107)
C I
where XY\ is a constant, then the exponent k is around 5 for
the proton-proton reaction and is about 10 for other

reactions. The rate of outflow of energy is generally not a

sensitive function of the temperature, being roughly

— ot vary as drastically with the temperature as
proportional to 1—(assuming a constant opacity.) The opacity does \
reaction rate does. Hence ,
the nuclear \ the production rate can be caused to vary by

orders of magnitude by a small change in temperature while

the outflow rate remains practically constant. This means
that the temperature of a star is adjusted until the rate

of production rate equals the outflow rate. If a slight
temperature perturbation is applied to a star, the star

will tend to restore its temperature to the value at which

a balance of energy is reached. This can be seen as follows:
Consider the case when the production rate exceeds the outflow
rate. Energy will accumulate in the star, increasing

the temperature. Then the pressure inside will increase.
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An increase in the pressure will expand the star, decreasing

its temperature, resulting in a decrease in the energy production
rate; the temperature as well as the pressure at the center

will decrease and the star will contract, heating up the star

and increasing the energy production rate.

While a detailed knowledge of stellar luminosity requires
a full treatment of the radiative transfer problem, a rough
estimate can be obtained from physical arguments. The rate
of radiative transport is dependent on the interaction of
photons with matter, and the problem may be regarded as a diffusion
problem. The rate of diffusion is determined by the
frequency absorption and re-emission takes place. If there
were no absorption, photons emitted at the center of a star
will reach the surface in R/c seconds. After a photon is
absorbed and re-emitted, the direction of the re-emitted photon
is not the same as the original photon. Hence the diffusion

problem can be regarded as a random walk problem: a photon
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changes its direction after one mean free path. According
to the theory of random walk problem, if the mean free path
is /\ , then the number of collisions NA a particle

undergoes before it travels a distance R is given by
Ny = (-&YL (II.108)
A A .

The time it taks for the particle to travel the distance R is

given by

_N,A RS
ty= Al - R

-
—-—

\
s A F (I1.109)

where v is the velocity. Applying this result to a star,
the luminosity L is given by

\_ - Total radiation enerqy of the star
- t (11.110)

Approximate the total radiation energy by Hf“: R3 0~T .

The mean free path A is %5% where U is the absorption
or scattering cross-section and n is the number density of
absorbers or scatterers. Assume that the number density

of scatterers and absorbers is the same as the electron

number density, we find

|
- (11.111)
n 47 3
3 [
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e

Eliminating 7 by using Eq. (II.87), we find
3 k4 t/
e () 5ER () (318
T + 2 N, 3 =2 (I1.112)

Define the unit time {} and the unit of stellar luminosity

L, and the unit of cross section J, by the following

equations:
t- =4 y
© = 2 27801 %70 aee = (.91 x10'qedTL 11,
O<G_
Lo - M = 4309 x/0 => (II.114)
to e
-2
To = e = ( J 4 Y to ot (II.115)
Expressing L in terms of Lo and t, . we find

Lo ) (4)” Lo(%ab’( )

4(%>(&‘//3(§) O) (II.116)

3
A
%) (%B)
According to our simple theory, L. d:- ( © .

"y

The cross section O depends on the temperature as well as
on the density. Since at a given temperature the density
depends on the mass of a star, the cross section o depends

on the mass indirectly and the resulting mass luminosity law

is [ Cﬁ; P1 where n is close to 3.
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II1.9. Evolutionary Time Scale of the Stars.

The main energy source of a star is the nuclear energy.

The time tn for a star to consume its nuclear energy is

0
t“= S JE LM") (I1.117)
ho = (Mo

where E(M;) is the nuclear energy content corresponding to
the unburnt nuclear fuel of mass M,, and L(Mp) is the luminosity

at M. For hydrogen reactions E(Mp) = 0.0007c2Mn, we have

° JM,
ML (M)

The luminosity of a star is reasonably constant until a

t n= 0.0007 C""S

(I1.118)

fractionA%f its total available nuclear fuel is used up,
afterwards the structure of the star changes drastically and

the luminosity increases rapidly. (Details of this are discussed
in Chapter XI.) Hence we can approximate Eq. (II1.118) by

the following expression:

t.= oooc X, M

n LA S

—

The value of x, is 0.1 for stars like the sun but may be as

n

E
B
l‘w

i

)

i

|

!

i

high as 0.5 for stars whose masses are in excess of 10 e .

‘ Using Eq. (II.116) for L, we find

2
| o~ 10 _2:> _§[

5 £, ® 9xo XL(OE (M)

For the sum ﬁ$>0J,(TF’03 and tﬂ“J 9x109 years. Detailed

calculation gives a value of 1010 years. For stars of masses ~30 @
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the life time is only around 10? years. Hence all massive
stars we now observe are relatively young Population I

stars, newly condensed from the interstellar medium.

According to the current theory of the origin of the elements,
all chemical elements are synthesized in stellar nuclear
reactions and redistributed into space by supernova explosion
or steady mass loss processes. This explains why massive stars

are rich in heavy elements.




